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Abstract-With the use of the stability conditions and the absence of homogeneous wall burnout 
analytical expressions are derived for the region of parameters with a change inside which the system of 
two-phase porous cooling is stable and the heated surface temperature does not exceed the limit for reliable 
use of a porous material. The system stability is found to depend on the substantial number of parameters, 
the kind of the coolant being one of them. 

The stability condition imposes very strict limitations upon the characteristics of the system which is 
accounted for by a sharp decrease in the coolant flow rate in case of recession of the evaporation 
region from the external surface inside the plate. It is obvious from the comparison of the results obtained 
and the parameters of the experimental installations described in the literature, that neglect of the above 
requirements is indeed one of the main reasons for the instability of two-phase transpiration cooling of a 

homogeneous wall, with water being used as a coolant. 

NOMENCLATURE 

dimensional and non-dimensional coolant 

mass flow rates; 

non-dimensional coordinate of the phase 

conversion region; 

wall thickness; 

delivery pressure; 

ambient pressure; 

external heat flux density; 

viscous and inertial resistance coefficients; 

effective thermal conductivity of vapour 

section; 

dynamic viscosity; 

density; 

heat capacity; 

enthalpy ; 
Reynolds number of a coolant flow; 

kinematic viscosity. 

Superscripts 

I, 

physical properties of liquid in a saturated 

state; 

physical properties of vapour in a saturated 

state; 
* parameters at the stability boundary; 
** , parameters at the reliability boundary. 

INTRODUCTION 

IN PAPER [l] the laws of cooling with coolant phase 

conversion inside a homogeneous flat porous wall 

subjected to surface heating are analysed. Character- 

istics are plotted which make it possible not only to 

draw a conclusion about the stability of the system but 

also to define permissible disturbances of the control- 

ling parameters in a stable system. Still there is an 

t Deceased. 

uncertainty as to the ways of solving the main problem 

which arises in design of the cooling system: what kind 

of thermophysical and structural characteristics should 

the porous wall possess that the system with the known 

characteristic parameters (density of external heat flux, 

ambient pressure, initial coolant temperature) be not 

only stable but its stability be preserved in case of 

some disturbances of these parameters. The external 

surface temperature should not exceed the limit for 

reliable use of porous materials. The permissible range 

of variations of the characteristic parameters depends 

on the particular construction of the system and is 

supposed to be known. 

The formulated problem is nothing but a problem on 

determination of the region of stability and reliability. 

This is the region where the variation of parameters do 

not disturb stable and reliable operation of the cooling 

system. The parameters required can be found by their 

arbitrary selection and subsequent check by plotting all 

the static characteristics which is to be repeated until 

the necessary requirements are met. Excessive amount 

of calculation is quite obvious in this case. 

ANALYTICAL DETERMINATION OF THE 
STABILITY REGION OF THE TWO-PHASE 

TRANSPIRATION COOLING SYSTEM 

Based on the stability condition derived in the earlier 

[l] paper, an analytical solution of the problem on 

determination of the stability region is suggested below. 

Here holds the condition to be achieved from the 

analysis of the thermal characteristic: the system of 

two-phase transpiration cooling is stable provided that 

the working point belongs to the falling section in the 

curve of density of the supplied external heat flux q 
vs non-dimensional coordinate l of the surface of 

equilibrium phase conversion inside the wall 

dq<O Tii . 
885 
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This should be supplemented with the analytical 
expression of the fact that the working point belongs to 
the thermal characteristics (the condition of equili- 
brium phase conversion) 

4 = (ii--r,T~)Gexp[~(l-l)]. (2) 

Here the coolant flow rate G and, due to an increase 
in the pressure in the evaporation region recessing into 
the plate, the enthalpy C of the generated dry saturated 
vapour depend on the coordinate of the equilibrium 
phase transition surface. 

The above relations hold in the stability region which 
can be found by defining its boundary, where inequality 
(1) transits into the equality 

dq x = 0. (3) 

Upon substituting (2) into (3) and making the 
appropriate transformations we have the relation 
between the parameters at the stability boundary 

1, I 
(I-$%+ 1 

y= 

[ 

1 ds 

I . 
G&z” 

--+&f 1 
(4) 

gdl e moo 

The expression incorporates the thickness of the 
porous wall 6, the effective thermal conductivity 1, of 
the porous material-vapour section, coolant flow rate 

G=gG, (5) 

equal to the product of the viscous coolant flow rate 
Gr (Darcy flow) under the effect of the pressure drop 
PO -PI on the plate 

PO--PI G=---- 
Gv’a 

(6) 

and non-dimensional flow rate 

2Ren 
m 

The dependence of the coolant flow rate on the 
position of the phase transition surface is accounted for 
in formula (7) by auxiliary complexes 

m = [I+_(l-I)]; n = [1+$(1-i)]. (8) 

Moreover the flow rate depends on the flow pattern 
described by the Reynolds number of the flow 

(9 

and on the physical properties $, v’, p’ of the liquid and 
of the vapour phases of the coolant, which are calcu- 
lated in a state of saturation with the pressure being 
equal to the known ambient pressure PI. Equation (4) 
incorporates the heat capacity of saturated vapour c” 
and mean heat capacity of liquid c, from 0°C to the 
initial coolant temperature T,. The characteristic 

dimension /?/a of the porous structure is a ratio of 
inertial p and viscous a drag coefficients. 

From relation (4) it follows that the system para- 
meters at the stability boundary depend considerably 
on the relative change in the coolant flow rate 

1 dg 

g dl 

when phase conversion surface is moving inside the 
plate. The expression for calculation of this derivative 

1 dg _ 

9 dl 

s($-I)+($-I)[--l+J(1+4Re$)] (lo) 

2nJ( 1+4Res) 

is obtained from formula (7) and non-dimensional 
equation of liquid motion in porous material 

1 = gm+g’nRe (11) 

for which relation (7) is the solution. 
To reduce the summand 

1 dil ___- 
il-c,T, dl 

in (4) to an analytical form, we linearize the dependence 
of the enthalpy of dry saturated vapour on the satura- 
tion pressure by a segment of the tangent drawn at 
the point where the pressure equals the ambient 
pressure 

di” di” 
-I I dP P=P, 

=- . 
dP P=P, 

(12) 

The variation of the saturated vapour enthalpy at reces- 
sion of the evaporation region is proportional to the 
difference of pressure P, in the equilibrium phase transi- 
tion region and ambient pressure PI 

di (13) 

Upon expressing the coolant enthalpy variation 
iz - c, T, in the form 

(ii-c, 2”) = (iz-i~=,)+(i~=, -cm T,) (14) 

and accounting for (12) and (13), and making some 
transformations, we arrive at 

-dp’ 1 

The pressure drop P, - PI at the vapour section of 
the coolant flow is to be calculated in fractions of the 
total pressure drop PO -PI on the porous plate from the 
relation 

P,--PI = (PO-Pl)(l-gl-g’/Re) (16) 
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and then 

substituting expressions (13~(17) and (5)-(10) into 
co~di~on (4) we obtain one of the equations to deter- 
mine the parameters at the stability boundary of the 
two-phase tr~spirat~on cooling system. Since none of 
the ~uations (5~(10), (13)-(17) i~~r~rates thermal 
condu~~ty of vapour &, it is only natural to solve 
equation (4) with respect to its boundary value nf. 

Substitution of the expression for the boundary value 
d!j as well as relations to calculate the coolant flow rate 
(5) and (9) and the enthalpy variation (19, (131, (16), 
(7)-(g) into the condition of ~~~briurn transition (2) 
makes it possible to write also an equation for deter- 
mining the heat flux q* co~~~~ding to the state at 
the stability boundary. 

According to f2J in a wide range of pressures from 
1 to 120 bars the enthalpy of saturated water vapour 
remains constant within 4.5 per cent, hence 

With water as a cooiant we obtain the following para- 
metric ~uations for the stability bo~dary 

stations (20)-(21) or their p~icuiar case (~8~-~19~ 
present a parametric way of determining the stability 
boundary in coordinates a2 -4. The effect of the para- 
meters @/CC, 6, T, upon the boundary values of Q, q* is 
obvious. The boundary thermal ~nductivity of vapour 
section increases in proportion with the plate thickness 
6, while the growth of the initial tem~rature Tm 
txduces the limit heat flux 4” in a stable system. At 
the same time it is not so easy to estimate the 
cont~bution of the parameters E, Re, PI. Therefore we 
shah choose the real values of the parameters /3/x, 
6, T,, fix Pi and plot the stability boundary changing 
consecutively one of the remaining parameters I, Re. 

The following p~~eters are assumed as initial ones: 
initial tem~rature of the water coolant T, = 20°C; 
~bient pressure PI = 10 bar, wail thickness S = 5 mm; 
porosity = 0.2. Viscous and inertial drag coefficients 
ct - 3.5 x 10i3me2 and fi = 1.2 x 10%‘, respectively, 
and characte~stic dimension of porous structure #X = 
344 x 10v6 m are calculated on the basis of the experi- 
mental data for a plate of similar thickness and 
porosity sintered of stainless steel powder [3]. 

In Fig. 1 curve 1 is the stability boundary at 
constant Reynolds numbers of the coolant flow Re = 
01. Numbers along the curve stand for the values of 

For systems with other coolants the stability 
boundary is described in a tedious but, which is most 
important, analy~cal form. Here the set of parameters 
incorporated into a brief parametric representation of 
the stability boundary 

J.: = G(LRe, ~~,~/~,~, kind of cooiant) (20) Y 

4 * = q*(f, Re, PI, @xl Ta, kind of coolant) (21) T$ 

remains the same. loo 
It should be noted that the accuracy of the assump- C; 

tions of constant physical pro~e~i~ of both coolant x 
phases and on their equality to relevant values in a 
saturated state, as well as on the linear dependence 
of the ~turat~ steam enthalpy on saturation pressure 
increases as the coohun eva~ration zone approaches lo-’ 
the external surface, when I -+ l-0 aad P, -+ PI. Hence, 106 IO’ 108 IO9 

in this case the aec~racy of ~lcu~ation of the stability Q* W/d 

Sunday by equations (~~~~2~~ or (18~-(19~ increases 
as well. 

Fro. 1. Stability re$on of equil~h~um two-phase 
transpiration cooling system at Re = @I. 
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the coordinate of the phase transition surface in the in- 
terval TV CO.11 relevant to the marked points. Constant 
pressure drop PO -P, bars corresponds to the indicated 
Reynolds number. 

The plotted boundary, however, does not provide 
any idea about the stability region, which should be 
filled as follows. We shall consider a system in which 
the phase transition surface has the coordinate I = 0.95. 
If the system is in a state close to the stability 
boundary, its parameters are represented by the point a. 
For the given conditions the equilibrium phase transi- 
tion in the region 1= 0.95 can be ensured with the para- 
meters AZ, q* having not only boundary values but also 
some other ones. provided that the equilibrium condi- 
tion (2) is satisfied. A set of such parameters makes a 
dot-dash line of the equilibrium phase transformation 
I= @95 passing via the point u. Plotting of thermal 
characteristics shows that the parameters L2, q relevant 
to the points of this curve in the left-hand upward 
direction from the boundary value place this cooling 
system among unstable ones. It is of interest to note 
that the point a is a point of contact of the dot-and-dash 
line I = 0.95 and the stability boundary. 

So, the stability region is filled with the family of dot- 
and-dash equilibrium phase transition line continua- 
tions I= const in the right-hand downward direction 
from the points of their contact with the stability 
boundary 

1, < n; 4 ’ 4*. (22) 

This region is bounded with the boundary and con- 
tinuations ofdash-and-dot lines 1 = 1.0 and 1 = 0.0. The 
stability region in Fig. f is hatched. 

It is also essential to note that the lines I= const 
partially pass through the hatched region to the point 
of contact with the stability boundary and cross the 
lines 1= const which have already been in contact with 
it. No more than two lines intersect at the same 
point, For example, lines I= 0.4 and 1 = 0.95 cross each 
other at point II. A system with such parameters is 
stable if the coolant evaporation zone has the co- 
ordinate I= @95, and it is unstable if I= @4. This and 
also that phase transition in the region 1= 0.95 in a 
system with the parameters presented by point I is 
stable, and by point III is unstable, is obvious from 
the static characteristics of these systems plotted in the 
previous paper. 

The Reynolds number Re = @l indicates the coolant 
flow pattern with dominating viscous drag. The 
stability boundaries in the transient flow Re = I-0 and 
with dominating inertial drag Re = 31.6 are presented 
in Figs. 2 and 3: The increase of the inertial drag in a 
transient flow results in an extremum point of the 
stability boundary, Re = const. The extremum point 
first appears at I = 1.0 and gradually changes the corre- 
lation between two boundary sections. One of them 
1~[1”,0] has a characteristic shape of a viscous flow 
pattern, the other section 1 E [I, F'] of the inertial one. 
The analysis shows that the extremum point parameters 
satisfy simultaneously three conditions, that is, the 
phase transition equilibrium condition (2); the state at 

I I lllll I 

106 

Q. W/m2 

FIG. 2. Stability region of equilibrium two-phase 
transpiration cooling system at Ru = 1.0. 

Q* W/m’ 

FIG. 3. Region ofstable and reliable operation 
of equilibrium two-phase transpiration cool- 
ingsystemat Re = 31.6: 1, stability boundary: 

2, reliability boundary. 

the stability boundary (3); bend of thermal character- 
istic 

d2q - 0 
df2- s 

If we plot a set of stability boundaries Re = const 
and connect the points with equal values of the equili- 
briumphasetransitioncoordinate by the lines I= const, 
we obtain two families ofcurves presented in Fig. 4. The 
ranges of viscous, transient and inertial flow patterns in 
a porous structure can easily be observed by the shape 
of the curves of these families. 

The lines I = const for viscous and inertial Row 
patterns are straight and the shape of the stability 
boundary Re = constdoes not depend on the Reynolds 
number. This follows from its analytical representation 
at limit transitions in equations (18) and (19) for the 
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Q. W/m2 

FIG. 4. Family curves Re = const and I = const at 
ambient pressure PI = 10 bar. 

viscous Re + 0 

1: = q* exp 

and inertial Re + co flow patterns 

-1 (24) 

i 

1 
x exp 

1+ 
2n 

(I-1) C-1 
LJ ij 

1 (23) 

It is also interesting to note that in case of stability 
boundary construction the use of relevant transpiration 
cooling criterion rather than of thermal conductivity of 
the vapour section allows very simple form of equation 
(18) for the viscous flow pattern 

Kf = (25) 

The ambient pressure Pi has a substantial effect on 
the boundary parameters of the system since the 
physical properties of both coolant phases, incor- 
porated in formulae (18)-( 19) vary sharply with the 
saturation pressure. Some figures of the type of Fig. 4 
for different ambient pressures would provide a most 
comprehensive picture of the relevant variation of the 
stability region in the cooling system. The main 
features, however, can easily be revealed even without 
such bulky procedure. It is enough to follow the varia- 
tion of the most characteristic line I = 1.0. Curves 14 
in Fig. 5 show the general trend of the boundary 
value of the vapour effective thermal conductivity to 
grow with pressure in the system during the phase 
transition on the external surface. Moreover, the curve 
I = la tends to straighten, i.e. the difference between 
its asymptotes for the viscous and inertial flow patterns 

q. W/m’ 

FIG. 5. Boundary parameters of equilibrium two-phase tran- 
spiration cooling system with evaporation from external 
surfacevsambientpressure:l,P, =O.l bar;2,P, = 1,Obar; 
3, P, = 10bar; 4, P, = lOObar; 5, Re = 0.01 bar; 6, Rr = 

1.0; 7, Re = 100. 

decreases. Curves 5-l show variation of the boundary 
parameters with pressure, the Reynolds number of the 
coolant flow being constant. 

The quantitative aspect of the results presented in 
Fig. 4 deserves special attention. For a viscous flow 
pattern the system is characterized by the maximal 
vapour thermal conductivity with evaporation on the 
external surface. For this case the relation derived from 
(23) for this case 

ny = q* 
SC” 

(26) 

makes it possible to find, by the known heat flux, the 
ultimate thermal conductivity of porous two-phase 
medium, which when being exceeded makes it entirely 
impossible for the system to reach any stability. 
Formula (26) as considered holds within the range of 
heat fluxes up to 3.0 x lo6 W/m’. And so it turns out, 
that for the external heat flux density q = lo6 W/m’, 
the porous medium thermal conductivity should be less 
than a very small limit value AZ < A$ = 0.3 W/m. deg 
(point a in Fig. 4) which decreases linearly with the heat 
flux decrease. 

Such quantitative results shed light on one of the 
main reasons for instability of experimental installa- 
tions reported in [4-81 for two-phase cooling of a 
homogeneous porous wall with water as a working 
fluid. In all of the installations the external heat flux 
density did not exceed lo6 W/m’, whereas the thermal 
conductivity of the porous metal and ceramic plates 
used there was never less than lOW/m.deg. It should 
also be noted that the experiments were carried out 
under atmospheric [Q-7] or even reduced [8] external 
pressure. The drop of the external pressure (Fig. 5) still 
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greater reduces the boundary value of the vapour 
section thermal conductivity. 

Such severe limitations are imposed upon the para- 
meters of a stable system even for evaporation on the 
external surface I = 1.0, when the accepted mode1 has 
the highest accuracy. What is the physical nature of 
such severe limitations? It becomes obvious if expres- 
sion (4) is written for water evaporation on the external 
surface 

(27) 

A sharp decrease in the coolant flow rate with reces- 
sion of the evaporation region inside the wall is great 

1 dg 

g dl 1=1 

and presents one of the main reasons for instability of 
two-phase cooling of a homogeneous wall. Thus, a 
small shift of the phase transition region inside the plate 
causes a substantial decrease in the flow rate. The 
heat quantity supplied to this region and necessary for 
coolant heating and evaporation should reduce with the 
same rate. The external heat flux being constant, this 
holds provided that all the produced heat excess is 
absorbed by substantially reduced vapour flow rate, for 
which the vapour section of the porous wall should 
have a relevant very small thermal conductivity. 

The stability of operation is the most important but 

ANALYTICAL DETERMINATION OF THE 
RELIABILITY REGION OF THE 

not the only requirement to the cooling system. It is 

TWO-PHASE TRANSPIRATION COOLING SYSTEM 

also necessary that the external wall surface tempera- 
ture does not exceed the permissible limit value TF* for 
reliable (without destruction) work of the porous 
material. Let us call this condition the reliability 
condition. 

With the view of the above analysis it is natural to 
construct the reliability region in the same plane, 
;Lz -4, because the cooling system remains stable and 
the external surface temperature does not exceed the 
permissible limit only in case of parameters variation 
inside the common area of the stability and reliability 
regions (stability and reliability region). 

Analytical relations for the calculation of the 
reliability boundary follow from the condition that in 
case of the equilibrium phase transition in a certain 
region with the coordinate 1 the external surface 
temperature inside the plate equals the limit r;t*. The 
first relation between the parameters at the reliability 
boundary (marked with 2 asterisks) expresses the condi- 
tion of phase transpiration equilibrium 

4 ** = (i;--c, ,)expE(l--n]. (28) 

The second relation follows from the equation of heat 
balance at the external wall surface. In the accepted 
model the coolant moves along the normal from the 
bulk fluid to the wall to be cooled. All the heat 

supplied to the external surface is therefore spent to 
increase its enthalpy from the initial value c, r, for 
the liquid phase to the enthalpy i(P,, T:*) of the escap- 
ing vapour overheated to the temperature Tt* 

y** = G[i(P,, T:*)-c, r,]. (29) 

The results of the solution to equations (28)-(29) for 
the parameters A$*, q** have the form 

It should be taken into account that the intermediate 
parameter 

i(P1, T**)-c, T, 
ST--------- 

il - c, T,, 
(32) 

incorporates the enthalpy ii of the dry saturated vapour 
that should be calculated in accordance with expres- 
sions (14), (13), (16), (7)-(9). 

From the brief parametric representation of the 
reliability boundary 

It is also of interest to note that for a water-cooled 
system, at fixed v* the intermediate parameter S is 

$* = A;*([, Re, PI, T;C*, /~/C/CC, 6, 

constant because i” = const. That is why for any 

kind of cooler) 

coolant flow pattern the shape of the reliability 

(33) 

4 

boundary does not depend on the Reynolds number 

** = q**(I, Re,P1, T:*,~/cY, T,,, kind of cooler) (34) 

it follows that it is to be defined by the same set of 

that follows from the results of transformation of 

parameters as the stability boundary and by the para- 

equations (30)-(31) to the form 

meter Tt*. 

r,;* = q**w l-l 

[i(Pl,T:*)-c,T,] 1nS’ 
(35) 

The expression for the reliability boundary is rather 
visual if the transpiration cooling criterion of the 
vapour section 

G6c” 1nS K;*=--=-_ 
n;* 1-l 

is used as a parameter. 
To illustrate relations (30)-(31) we shall plot the 

reliability boundary when the coordinate I of the phase 
transition surface is changing and all the other para- 
meters are fixed. To compare the calculation with the 
results for the stability region the constant parameters 
were left unchanged: water is a coolant; T, = 20°C; 
PI = 10 bar; 6 = 5 mm; a = 3.5 x 10’3m-2; B = 1.2 x 
108m-‘; /.?/a = 344 x 10m6m. 

In Fig. 6 curve 2 plots the reliability boundary with 
the Reynolds number Re = 0.1 and the maximum 
temperature of the heated surface Tt* = 1000°C. 
Relevant values of the evaporation region coordinate 
are marked by numerals along the curve. 
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FIG. 6. Region of stable and reliable operation of equilib- 
rium two-phase transpiration cooling system at Re = 0.1: 

1, stability boundary; 2, reliability boundary. 

To define the reliability region we should construct 
dot-and-dash lines I = const. of eq~libri~ phase 
transition. It turns out that the reliability condition 
holds for the systems whose parameters &,q are 
presented by dots on dot-dash lines I = const. upwards 
to the left from similar points of their intersection with 
the stability boundary 

&>aI*; fj<q**. (37) 

The reliability region is shown by dashes and con- 
sists of two parts disposed at different sides of the 
reliability boundary. The boundary condition is plotted 
in the same figure as curve 1. The point of contact 
between the reliability and stability regions (point b) 
shows the place of transition of the reliability region 
from one of the sides of its boundary to the other. 
The common part of the stability and reliability regions 
where the conditions 

nz* < ;12 < ny q** > 4 > f.I* (38) 

are fulfilled, are shown as hatched regions in Fig. 6. 
The comparison of the stability regions in Figs. 1 and 

6 manifests that the reliability condition greatly 
narrows the region of permissible parameters. Phase 
transition is only possible in a very thin layer near the 

externalsurface. The width of the hatched area, that 
is the range of the permissible fluctuations of the heat 
tlux increases generally with a decrease in the thermal 
conductivity of the vapour section, but the thermal 
conductivity in this case becomes extremely small. 

Curve 2 in Fig. 3 is also a reliability boundary. The 
transition from the conditions with the dominating 
viscous drag to the inertial one has changed the form 
of contact of the stability and reliability boundaries. 
However, the conclusion about substantial narrowing 
of the range of permissible parameters does hold here. 

The use of the family of stability and reliability 
regions relevant to different values of the Reynolds 
number makes it possible to determine not only 
permissible deviations of the external heat flux density 
and effective vapour thermal conductivity at constant 
pressure drop on the plate (constant Re number) from 
the calculated data, but also permissible pressure drop 
fluctuations. 

The analytical investigation of the region of stable 
and reliable work of a two-phase transpiration cooling 
system has revealed one of the main reasons for 
instability of the experimental installations for two- 
phase water cooling of a homogeneous porous wall 
reported in literature. 
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DETERMINATIGN DE LA REGION ~UTILISATION STABLE ET SURE DES 
SYSTEMES DE REFROIDISSEME~ PAR TRANSPIRATION EN EQUILIBRE BIPHASIQUE 

R&urn&-A l’aide des conditions de stabilite, en l’absence de b&lure homogtne de la paroi, des expressions 
analytiques sont obtenues pour la region de variation des parametres dans laquelle le syst&me de 
refroidissement biphasique en milieu poreux est stable et la temperature de la paroi chat&e n’excede pas 
la limite pour un emploi convenable dun materiau poreux. 11 est trouvi que la stabilite du syst&ne depend 
d’un nombre important de parametres, le genre du refrigerant ktant l’un d’entre eux. 

La condition de stabilite impose des limitations t&s strictes sur les caracteristiques du systeme dont 
on tient compte dans le cas d’un retrait de la region d’tiaporation de la surface externe dans la plaque 
par une diminution ~po~ante de la vitesse d’ecoulement du refrigerant. I1 apparait clairement de la 

HMT Vol. 18, No. 718-D 
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comparaison des rbultats obtenus avec les paramtrtres des installations expkimentales d&rites dans les 

publications, que le fait de nbgliger les conditions ci-dessus, constitue en vtritk, l’une des principales 
raisons de I’instabilitC du refroidissement par transpiration biphasique d’une paroi homog&ne avec 

refroidissement A l’eau. 

BESTIMMUNG DES GEBIETS DES STABILEN UND SICH 
ZUVERL.&SIG EINSTELLENDEN VORGANGS DER 

GLEICHGEWICHTS-ZWEIPHASEN-TRANSPIRATIONSKOHLUNG 

Zusammenfassung-Unter Verwendung der StabilitLtsbedingungen werden fiir das Gebiet, in dem das 
System der Zweiphasen-Transpirationskiihlung stabil ist und die Temperatur der beheizten OberflLche 
den Bereich fiir die zuverlBssige Verwendung von porb;sem Material nicht iiberschreitet, analytische 
Beziehungen abgeleitet. 

Es wurde festgestellt, dal3 die Stabilittit des Systems von einer betrdchtlichen Anzahl von Parametern, 
u. a. der Art des Kiihlmittels, abhlngt. 

Die StabilitLtskriterien bedingen sehr enge Begrenzungen der Charakteristiken des Systems. Es wurde 
eine starke Abnahme des Kiihlmittelstroms im Fall eines Riickganga des Verdampfungsbereichs von 
der tiuDeren Oberfllche in die Platte hinein festgestellt. Der Vergleich der Ergebnisse aus anderen 
Experimenten, die der Literatur entnommen wurden, zeigt deutlich. da13 eine Vernachltissigung der obigen 
Bedingungen in der Tat eine der wichtigsten Ursachen fiir die lnstabilitlt der Zweiphasen-Tran- 

spirationskiihlung einer homogenen Wand unter Bentitzung von Wasser als Kiihlmittel ist. 

OI-IPEfiEJIEHME 06JIACTI4 IIAPAMETPOB YCTOfi‘IllBOfi M HAflE)KHOti 
PAsOTbI PABHOBECHOfi CMCTEMbI ABYXQA3HOrO I-IOPRCTOI-0 OXJIA>KAEHkl5I 

Amio~alpl~ - C Wcnonb30aaHfleM ycno~efi yc~0kYu~ocTM H OTC~TCTBWI nporapa 0A~0ponHoii 

CTeHKA BblBeneHb, aHaJIHTWYeCKWe BblDaxeHIIR LlJIfl BblYRCneHHII o6nacls napaMeTpOB, I’IpIi A3- 

MeHeHmi B~ppf KOTOPOZ~ cMcTeMa nBy&a3Horo nopucTor0 0xnamneHsn ycloGiBa, a_Teivmeparypa 

Har,,eBaeMOfi nOBe,,XHOCTM He npeBbImaeT n!JeJlenbHOSi IJna HaL@XHOii 3KCnyaTauHH nOpHCTor0 

MakpHana. YCTaH&BJEHO, ‘IT0 yCTOfiYHkIOCTb CACTeMbI OlTpenenaeWSl CyIWCrBeHHblM KOJIWYeCTBOM 

napaMelpos, O~HRM ~3 KoTopblx fianfleTc5i BHQ. 0xnanHTenn. 

Ycnoeae ~CTOPYHBOCTR HaKnanbIBaeT 0YeHb xcecTKHe 0rpaHHYeHwa Ha XapaKTepwcniKB cncTeMb1, 

YTO 06,,aCH,IeWI pt?3KHM yMeHbmeHHeM PaCXOAa OXJIaIWiTenll lTpA 3arny6nensili 30Hbl HCl-IapeHHSl 

C BHemHei-4 l-I0!3epXHOCTH BHyTpb I’IJlaCTHHbl. 113 CpaBHeHHs IlOJIyYeHHblX pe3yJlbTaTOB C napaMep- 

paME OnUMHHbIX B J,ATepa-ryp 3KCnepUMeHTaJIbHblX yClaHOBOK CTaHOBHTCR OYeBIIAHbIM, YTO 

Heco6JnoneHHe yKa3aHHblX Tpe6OBaHHfi W RBJIReTCII OAHOSi H3 OCHOBHbIX lJpEIYkiH HCyCTOi%YkiBOCTII 

AByx@asHoro nopacTor0 oxnamnemifl 0~~0p0aH0k CTeHKU npn uCnOnb30BaHmi BOJIbI B KaYWTBe 

0xnanHTenn. 


