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Abstract—With the use of the stability conditions and the absence of homogeneous wall burnout
analytical expressions are derived for the region of parameters with a change inside which the system of
two-phase porous cooling is stable and the heated surface temperature does not exceed the limit for reliable
use of a porous material. The system stability is found to depend on the substantial number of parameters,

the kind of the coolant being one of them.

The stability condition imposes very strict limitations upon the characteristics of the system which is
accounted for by a sharp decrease in the coolant flow rate in case of recession of the evaporation
region from the external surface inside the plate. It is obvious from the comparison of the results obtained
and the parameters of the experimental installations described in the literature, that neglect of the above
requirements is indeed one of the main reasons for the instability of two-phase transpiration cooling of a

homogeneous wall, with water being used as a coolant.

NOMENCLATURE
G,g, dimensional and non-dimensional coolant
mass flow rates;
I, non-dimensional coordinate of the phase
conversion region;
4, wall thickness;

P,,  delivery pressure;
P, ambient pressure;

q, external heat flux density;

o, B,  viscous and inertial resistance coefficients;

As, effective thermal conductivity of vapour
section;

U, dynamic viscosity;

0, density;

¢, heat capacity;

i, enthalpy;

Re,  Reynolds number of a coolant flow;

v, kinematic viscosity.

Superscripts

’ physical properties of liquid in a saturated
state;

” physical properties of vapour in a saturated
state;

* parameters at the stability boundary;

**  parameters at the reliability boundary.

INTRODUCTION

IN PAPER [1] the laws of cooling with coolant phase
conversion inside a homogeneous flat porous wall
subjected to surface heating are analysed. Character-
istics are plotted which make it possible not only to
draw a conclusion about the stability of the system but
also to define permissible disturbances of the control-
ling parameters in a stable system. Still there is an

1 Deceased.

uncertainty as to the ways of solving the main problem
which arises in design of the cooling system: what kind
of thermophysical and structural characteristics should
the porous wall possess that the system with the known
characteristic parameters (density of external heat flux,
ambient pressure, initial coolant temperature) be not
only stable but its stability be preserved in case of
some disturbances of these parameters. The external
surface temperature should not exceed the limit for
reliable use of porous materials. The permissible range
of variations of the characteristic parameters depends
on the particular construction of the system and is
supposed to be known.

The formulated problem is nothing but a problem on
determination of the region of stability and reliability.
This is the region where the variation of parameters do
not disturb stable and reliable operation of the cooling
system. The parameters required can be found by their
arbitrary selection and subsequent check by plotting all
the static characteristics which is to be repeated until
the necessary requirements are met. Excessive amount
of calculation is quite obvious in this case.

ANALYTICAL DETERMINATION OF THE
STABILITY REGION OF THE TWO-PHASE
TRANSPIRATION COOLING SYSTEM

Based on the stability condition derived in the earlier
[1] paper, an analytical solution of the problem on
determination of the stability region is suggested below.
Here holds the condition to be achieved from the
analysis of the thermal characteristic: the system of
two-phase transpiration cooling is stable provided that
the working point belongs to the falling section in the
curve of density of the supplied external heat flux ¢
vs non-dimensional coordinate [ of the surface of
equilibrium phase conversion inside the wall

dq

a <0. 1)
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This should be supplemented with the analytical
expression of the fact that the working point belongs to
the thermal characteristics (the condition of equili-
brium phase conversion)

4= (—cy T@Gexp[ e <1~1)J. @

A
Here the coolant flow rate G and, due to an increase
in the pressure in the evaporation region recessing into
the plate, the enthalpy i, of the generated dry saturated
vapour depend on the coordinate of the equilibrium
phase transition surface.

The above relations hold in the stability region which
can be found by defining its boundary, where inequality
(1) transits into the equality

dg _

di
Upon substituting (2) into (3) and making the
appropriate transformations we have the relation
between the parameters at the stability boundary

1dg
I—1)- =+ 1

Géc" [1dyg 1 dair'l
gdl  i-¢,T, di
The expression incorporates the thickness of the

porous wall 8, the effective thermal conductivity 4, of
the porous material-vapour section, coolant flow rate

G =g¢G, )

equal to the product of the viscous coolant flow rate
G, (Darcy flow) under the effect of the pressure drop
P, — P, on the plate

0. &)

P,—P
G= O' 1 (6)
oV

and non-dimensional flow rate

-1 +l<1+4Re@
- . )

2Re i
m

g

The dependence of the coolant flow rate on the
position of the phase transition surface is accounted for
in formula (7) by auxiliary complexes

m=[l+1}’—:(1—l)} n=[1+p—:,(1—1)]. ®)
v p

Moreover the flow rate depends on the flow pattern
described by the Reynolds number of the flow

Re = Gl,l?/“= (Po— Py)B/a ©)

u ov'ioy

and on the physical properties i/, v, p of the liquid and
of the vapour phases of the coolant, which are calcu-
lated in a state of saturation with the pressure being
equal to the known ambient pressure P;. Equation (4)
incorporates the heat capacity of saturated vapour ¢”
and mean heat capacity of liquid ¢, from 0°C to the
initial coolant temperature 7,. The characteristic
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dimension B/x of the porous structure is a ratio of
inertial § and viscous « drag coefficients.

From relation (4) it follows that the system para-
meters at the stability boundary depend considerably
on the relative change in the coolant flow rate

1dg

g dl
when phase conversion surface is moving inside the
plate. The expression for calculation of this derivative
tdg
gdl

&(‘;—:’—1>+<£:—,—1)[—1+\/(1+4Re-n—2>]
m p 7 m (10)
2n\/(l+4Re—n~2>
m

is obtained from formula (7) and non-dimensional
equation of liquid motion in porous material

1 =gm+g*nRe (11)

for which relation (7) is the solution.
To reduce the summand
1 di}
—c, T, dl

in (4) to an analytical form, we linearize the dependence
of the enthalpy of dry saturated vapour on the satura-
tion pressure by a segment of the tangent drawn at
the point where the pressure equals the ambient
pressure

d’
dp

diu

= 12
p=p, dP 12

P=P,

The variation of the saturated vapour enthalpy at reces-
sion of the evaporation region is proportional to the
difference of pressure P, in the equilibrium phase transi-
tion region and ambient pressure P,

di

1= 4p

T
iy =i

(Pe—Py).

Py

(13)

Upon expressing the coolant enthalpy variation
iy — ¢y Ty in the form
(e—cu T = (- )+ =1 —cn T,))  (14)

and accounting for (12) and (13), and making some
transformations, we arrive at

1 dp,
1 dif P,—-P, di
R (15)
ip~c, T, dl ijo1—cn Ty
1 + d'//
i
P,—P)—
( e 1) dP P,

The pressure drop P,— P; at the vapour section of
the coolant flow is to be calculated in fractions of the
total pressure drop P, — P, on the porous plate from the
relation

P.~P, = (Po—Py)(I-gl—g*IRe) (16)
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and then

dP = (Py— P,)[g+g2Re+f~~w(g+2g2Re)} (7

Substituting expressions (13)}-(17) and (5)-(10) into
condition (4) we obtain one of the equations to deter-
mine the parameters at the stability boundary of the
two-phase transpiration cooling system. Since none of
the equations (5)-(10), (13)-(17) incorporates thermal
conductivity of vapour i, it is only natural to solve
equation (4) with respect to its boundary value A3.

Substitution of the expression for the boundary value
/% as well as relations to calculate the coolant flow rate
(5} and (9} and the enthalpy variation (14), (13), {16},
(T)~(9) into the condition of equilibrium transition (2)
makes it possible to write also an equation for deter-
mining the heat flux g* corresponding to the state at
the stability boundary.

According to [2] in a wide range of pressures from
1 to 120 bars the enthalpy of saturated water vapour
remains constant within 45 per cent, hence

1 di,

el

With water as a coolant we obtain the following para-
metric equations for the stability boundary

5cll !
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DISCUSSION OF RESULTS

Equations (20)-(21) or their particular case {18)-{19)
present a parametric way of determining the stability
boundary in coordinates 4, —g. The effect of the para-
meters B/a,J, T,, upon the boundary values of 2%,4* is
obvious. The boundary thermal conductivity of vapour
section increases in proportion with the plate thickness
8, while the growth of the initial temperature T,
reduces the limit heat flux g* in a stable system. At
the same time it is not so easy to estimate the
contribution of the parameters I, Re, P;. Therefore we
shall choose the real values of the parameters f/x,
8, T.,, fix Py and plot the stability boundary changing
consecutively one of the remaining parameters /, Re,

The following parameters are assumed as initial ones:
initial temperature of the water coolant T, = 20°C;.
ambient pressure Py = 10bar, wall thickness é = Smm;
porosity [] = 0-2. Viscous and inertial drag coefficients
a=35%x10"%m"? and f = 1-2x 10%m ™, respectively,
and characteristic dimension of porous structure f/a =
344 x 10~ % m are calculated on the basis of the experi-
mental data for a plate of similar thickness and
porosity sintered of stainless steel powder [3].

In Fig. 1 curve 1 is the stability boundary at
constant Reynolds numbers of the coolant flow Re =
0'1. Numbers along the curve stand for the values of

2n \/(1+4Rei§>
m

7*=(i—Cpn m)ﬁf 2[ 1+\/(1+4Re£~2ﬂ

§‘-~—--——[ 1+\/<1+4Rei’~)](f_-1) 1+ - :
Pl " (f~1)[<3’—;~1)~2’3+%~1)<-«1+\/(1+4Re—”-§)>]
v m m

(18)

-1

xexpd,

2n \/(1 +4Re 1—1—5)
m

{19)

- 1)[(3’-'-'~1)§""+(p;"‘><“”\/ (**‘*Re;%)ﬂ

For systems with other coolants the stability
boundary is described in a tedious but, which is most
important, analytical form. Here the set of parameters
incorporated into a brief parametric representation of
the stability boundary

A¥ = A3(l,Re, Py, B/a,8, kind of coolant)
q* = g*(l, Re, Py, Bfo, T, kind of coolant)

remains the same.

It should be noted that the accuracy of the assump-
tions of constant physical properties of both coolant
phases and on their equality to relevant values in a
saturated state, as well as on the linear dependence
of the saturated steam enthalpy on saturation pressure
increases as the coolant evaporation zone approaches
the external surface, when { — 1-0 and P, — P,. Hence,
in this case the accuracy of calculation of the stability
boundary by equations (20)-{21) or (18)~(19) increases
as well.

(20)
@1

10!

w/m °C

¥

S
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Fic. 1. Stability region of equilibrium two-phase
transpiration cooling system at Re = 01,
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the coordinate of the phase transition surface in the in-
terval € [0-1] relevant to the marked points. Constant
pressure drop P, — P, bars corresponds to the indicated
Reynolds number.

The plotted boundary, however, does not provide
any idea about the stability region, which should be
filled as follows. We shall consider a system in which
the phase transition surface has the coordinate I = 095,
If the system is in a state close to the stability
boundary, its parameters are represented by the point a.
For the given conditions the equilibrium phase transi-
tion in the region [ = 095 can be ensured with the para-
meters A%, g* having not only boundary values but also
some other ones, provided that the equilibrium condi-
tion (2) is satisfied. A set of such parameters makes a
dot-dash line of the equilibrium phase transformation
1 =095 passing via the point a. Plotting of thermal
characteristics shows that the parameters A,, g relevant
to the points of this curve in the left-hand upward
direction from the boundary value place this cooling
system among unstable ones. It is of interest to note
that the point ais a point of contact of the dot-and-dash
line [ = 095 and the stability boundary.

So, the stability region is filled with the family of dot-
and-dash equilibrium phase transition line continua-
tions ! = const in the right-hand downward direction
from the points of their contact with the stability
boundary

Ay < A% g>qg* (22)

This region is bounded with the boundary and con-
tinuations of dash-and-dot lines ! = 1-0 and I = 0-0. The
stability region in Fig. 1 is hatched.

It is also essential to note that the lines | = const
partially pass through the hatched region to the point
of contact with the stability boundary and cross the
lines I = const which have already been in contact with
it. No more than two lines intersect at the same
point. Forexample, lines I = 0-4 and [ = 0-95 cross each
other at point II. A system with such parameters is
stable if the coolant evaporation zone has the co-
ordinate | = 0-95, and it is unstable if / = 0-4. This and
also that phase transition in the region /=095 in a
system with the parameters presented by point I is
stable, and by point III is unstable, is obvious from
the static characteristics of these systems plotted in the
previous paper.

The Reynolds number Re = 01 indicates the coolant
flow pattern with dominating viscous drag. The
stability boundaries in the transient flow Re = 1-0 and
with dominating inertial drag Re = 31'6 are presented
in Figs. 2 and 3. The increase of the inertial drag in a
transient flow results in an extremum point of the
stability boundary, Re = const. The extremum point
first appears at [ = 1-0 and gradually changes the corre-
lation between two boundary sections. One of them
le[I*,0] has a characteristic shape of a viscous flow
pattern, the other section Ie[1,/°] of the inertial one,
The analysis shows that the extrermum point parameters
satisfy simultaneously three conditions, that is, the
phase transition equilibrium condition (2); the state at

Tz‘iili ]
i
e
£
~
; —
E ]
L
\1=o\_
\

g, W/m?

Fi1G. 2. Stability region of equilibrium two-phase
transpiration cooling system at Re = [-0.

W/m °C

Ao

108 10°
g, W/m?

F1G. 3. Region of stable and reliable operation

of equilibrium two-phase transpiration cool-

ingsystemat Re = 31-6: 1, stability boundary;
2, reliability boundary.

the stability boundary (3); bend of thermal character-
istic
2
a_y
d/

If we plot a set of stability boundaries Re = const
and connect the points with equal values of the equili-
brium phasetransition coordinate by the lines [ = const,
we obtain two families of curves presented in Fig. 4. The
ranges of viscous, transient and inertial flow patterns in
a porous structure can easily be observed by the shape
of the curves of these families.

The lines [ = const for viscous and inertial flow
patterns are straight and the shape of the stability
boundary Re = const does not depend on the Reynolds
number. This follows from its analytical representation
at limit transitions in equations (18) and (19) for the
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FiG. 4. Family curves Re = const and I = const at
ambient pressure P; = 10 bar.
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2n
I+ ——
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It is also interesting to note that in case of stability
boundary construction the use of relevant transpiration
cooling criterion rather than of thermal conductivity of
the vapour section allows very simple form of equation
(18) for the viscous flow pattern

K# = Géc" _ (Y_ 3 1>.
A% v

The ambient pressure P; has a substantial effect on
the boundary parameters of the system since the
physical properties of both coolant phases, incor-
porated in formulae (18)—(19) vary sharply wiih the
saturation pressure. Some figures of the type of Fig. 4
for different ambient pressures would provide a most
comprehensive picture of the relevant variation of the
stability region in the cooling system. The main
features, however, can easily be revealed even without
such bulky procedure. It is enough to follow the varia-
tion of the most characteristic line [ = 1-0. Curves 1-4
in Fig. 5 show the general trend of the boundary
value of the vapour effective thermal conductivity to
grow with pressure in the system during the phase
transition on the external surface. Moreover, the curve
= 1'0 tends to straighten, i.c. the difference between
its asymptotes for the viscous and inertial flow patterns

(25)
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F1G. 5. Boundary parameters of equilibrium two-phase tran-

spiration cooling system with evaporation from external

surface vs ambient pressure: 1, P, = 0:1 bar; 2, P, = 1-Obar;

3, P, =10bar; 4, P, = 100bar; 5, Re = 0-01 bar; 6, Re =
1-0; 7, Re = 100.

decreases. Curves 5-7 show variation of the boundary
parameters with pressure, the Reynolds number of the
coolant flow being constant.

The quantitative aspect of the results presented in
Fig. 4 deserves special attention. For a viscous flow
pattern the system is characterized by the maximal
vapour thermal conductivity with evaporation on the
external surface. For this case the relation derived from
(23) for this case

(SC”

_____VT.___
(i”— CmTco) (ﬁr_ - 1>
y

makes it possible to find, by the known heat flux, the
ultimate thermal conductivity of porous two-phase
medium, which when being exceeded makes it entirely
impossible for the system to reach any stability.
Formula (26) as considered holds within the range of
heat fluxes up to 30 x 10° W/m?2. And so it turns out,
that for the external heat flux density ¢ = 10 W/m?,
the porous medium thermal conductivity should be less
than a very small limit value A, < A% = 0-:3W/m. deg
(point a in Fig. 4) which decreases linearly with the heat
flux decrease.

Such quantitative results shed light on one of the
main reasons for instability of experimental installa-
tions reported in [4-8] for two-phase cooling of a
homogeneous porous wall with water as a working
fluid. In all of the installations the external heat flux
density did not exceed 10° W/m?, whereas the thermal
conductivity of the porous metal and ceramic plates
used there was never less than 10 W/m.deg. It should
also be noted that the experiments were carried out
under atmospheric [4-7] or even reduced [8] external
pressure. The drop of the external pressure (Fig. 5) still

Mg =q* (26)
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greater reduces the boundary value of the vapour
section thermal conductivity.

Such severe limitations are imposed upon the para-
meters of a stable system even for evaporation on the
external surface | = 10, when the accepted model has
the highest accuracy. What is the physical nature of
such severe limitations? It becomes obvious if expres-
sion (4) is written for water evaporation on the external
surface

q*éc” 1
i —cnT. 1dg

g di

A sharp decrease in the coolant flow rate with reces-

sion of the evaporation region inside the wall is great

1dg

g dl
and presents one of the main reasons for instability of
two-phase cooling of a homogeneous wall. Thus, a
small shift of the phase transition region inside the plate
causes a substantial decrease in the flow rate. The
heat quantity supplied to this region and necessary for
coolant heating and evaporation should reduce with the
same rate. The external heat flux being constant, this
holds provided that all the produced heat excess is
absorbed by substantially reduced vapour flow rate, for
which the vapour section of the porous wall should
have a relevant very small thermal conductivity.

=

(27)

=1

I=1

ANALYTICAL DETERMINATION OF THE
RELIABILITY REGION OF THE
TWO-PHASE TRANSPIRATION COOLING SYSTEM

The stability of operation is the most important but
not the only requirement to the cooling system. It is
also necessary that the external wall surface tempera-
ture does not exceed the permissible limit value T7** for
reliable (without destruction) work of the porous
material. Let us call this condition the reliability
condition.

With the view of the above analysis it is natural to
construct the reliability region in the same plane,
A, —gq, because the cooling system remains stable and
the external surface temperature does not exceed the
permissible limit only in case of parameters variation
inside the common area of the stability and reliability
regions (stability and reliability region).

Analytical relations for the calculation of the
reliability boundary follow from the condition that in
case of the equilibrium phase transition in a certain
region with the coordinate ! the external surface
temperature inside the plate equals the limit 7**. The
first relation between the parameters at the reliability
boundary (marked with 2 asterisks) expresses the condi-
tion of phase transpiration equilibrium

L Ge”
q** = (le —Cm Tao)exp[ JEE (1 _l):)

The second relation follows from the equation of heat
balance at the external wall surface. In the accepted
model the coolant moves along the normal from the
bulk fluid to the wall to be cooled. All the heat

(28)

supplied to the external surface is therefore spent to
increase its enthalpy from the initial value ¢, T, for
the liquid phase to the enthalpy i(P,, T**) of the escap-
ing vapour overheated to the temperature T7*

q** = G[i(P,, T}*)—c, T, ] 29

The results of the solution to equations (28)~(29) for
the parameters A3*, g** have the form

Se'w 1-
= 2n[ \/(1+4Re )]1 5 (0)

*% = [j(P, TF*)—
q [l( 1+ 11 ] /azn

x[—1+\/<1+4Rer%>:]. (31)

It should be taken into account that the intermediate
parameter
P, T —c, T,
S§=—r——"——= 32
L=y T, (32
incorporates the enthalpy i, of the dry saturated vapour
that should be calculated in accordance with expres-
sions (14), (13), (16), (1)-(9).
From the brief parametric representation of the
reliability boundary

% = A3*(I,Re, P, T¥*, B/, 0, kind of cooler)  (33)
g** = ¢**(,Re, Py, T{**, B/a, T, kind of cooler)  (34)

it follows that it is to be defined by the same set of
parameters as the stability boundary and by the para-
meter T*.

It is also of interest to note that for a water-cooled
system, at fixed T7* the intermediate parameter S is
constant because i” = const. That is why for any
coolant flow pattern the shape of the reliability
boundary does not depend on the Reynolds number
that follows from the results of transformation of
equations (30)-(31) to the form

Hk G -
PR, WA i) (35)
[i(P,, T¥*)~¢, T.] InS

The expression for the reliability boundary is rather
visual if the transpiration cooling criterion of the
vapour section

Géc” InS

K¥* = ="

i 11

(36)

is used as a parameter.

To illustrate relations (30)—(31) we shall plot the
reliability boundary when the coordinate [ of the phase
transition surface is changing and all the other para-
meters are fixed. To compare the calculation with the
results for the stability region the constant parameters
were left unchanged: water is a coolant; T, = 20°C;

=10bar; 6 = Smm; a = 35x103m™%; B=12x
108m~!; Bju = 344 x 10~ 5m.

In Fig. 6 curve 2 plots the reliability boundary with
the Reynolds number Re =01 and the maximum
temperature of the heated surface T¥* = 1000°C.
Relevant values of the evaporation region coordinate
are marked by numerals along the curve.
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Xz,
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10°
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FiG. 6. Region of stable and reliable operation of equilib-
rium two-phase transpiration cooling system at Re = 0-1:
1, stability boundary; 2, reliability boundary.

To define the reliability region we should construct
dot-and-dash lines ! = const. of equilibrium phase
transition. It turns out that the reliability condition
holds for the systems whose parameters A,,g are
presented by dots on dot—dash lines I = const. upwards
to the left from similar points of their intersection with
the stability boundary

Ay > A3%; (37)

The reliability region is shown by dashes and con-
sists of two parts disposed at different sides of the
reliability boundary. The boundary condition is plotted
in the same figure as curve 1. The point of contact
between the reliability and stability regions (point b)
shows the place of transition of the reliability region
from one of the sides of its boundary to the other.
The common part of the stability and reliability regions
where the conditions

q < q**‘

ABr <l <My ¢*>qg> gt (38)

are fulfilled, are shown as hatched regions in Fig, 6.
The comparison of the stability regions in Figs. 1 and
6 manifests that the reliability condition greatly
narrows the region of permissible parameters. Phase
transition is only possible in a very thin layer near the

external surface. The width of the hatched area, that
is the range of the permissible fluctuations of the heat
flux increases generally with a decrease in the thermal
conductivity of the vapour section, but the thermal
conductivity in this case becomes extremely small.

Curve 2 in Fig. 3 is also a reliability boundary. The
transition from the conditions with the dominating
viscous drag to the inertial one has changed the form
of contact of the stability and reliability boundaries,
However, the conclusion about substantial narrowing
of the range of permissible parameters does hold here.

The use of the family of stability and reliability
regions relevant to different values of the Reynolds
number makes it possible to determine not only
permissible deviations of the external heat flux density
and effective vapour thermal conductivity at constant
pressure drop on the plate {constant Re number) from
the calculated data, but also permissible pressure drop
fluctuations.

The analytical investigation of the region of stable
and reliable work of a two-phase transpiration cooling
system has revealed one of the main reasons for
instability of the experimental installations for two-
phase water cooling of a homogeneous porous wall
reported in literature.
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DETERMINATION DE LA REGION D'UTILISATION STABLE ET SURE DES
SYSTEMES DE REFROIDISSEMENT PAR TRANSPIRATION EN EQUILIBRE BIPHASIQUE

Résumé— A Paide des conditions de stabilité, en Pabsence de briilure homogéne de la paroi, des expressions
analytiques sont obtenues pour la région de variation des paramétres dans laquelle le systéme de
refroidissement biphasique en milieu poreux est stable et la température de la paroi chauffée n'excéde pas
la limite pour un emploi convenable d’un matériau poreux. Il est trouvé que la stabilité du systéme dépend
d’un nombre important de paramétres, le genre du réfrigérant étant 'un d’entre eux.

La condition de stabilité impose des limitations trés strickes sur les caractéristiques du systéme dont
on tient compte dans le cas d’un retrait de la région d’évaporation de la surface externe dans la plaque
par une diminution importante de la vitesse d’écoulement du réfrigérant. Il apparait clairement de la
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comparaison des résultats obtenus avec les paramétres des installations expérimentales décrites dans les

publications, que le fait de négliger les conditions ci-dessus, constitue en vérité, I'une des principales

raisons de linstabilité du refroidissement par transpiration biphasique d’'une paroi homogéne avec
refroidissement a I'eau.

BESTIMMUNG DES GEBIETS DES STABILEN UND SICH
ZUVERLASSIG EINSTELLENDEN VORGANGS DER
GLEICHGEWICHTS-ZWEIPHASEN-TRANSPIRATIONSK UHLUNG

Zusammenfassung — Unter Verwendung der Stabilitdtsbedingungen werden fiir das Gebiet, in dem das
System der Zweiphasen-Transpirationskiihlung stabil ist und die Temperatur der beheizten Oberfliche
den Bereich fiir die zuverldssige Verwendung von porGsem Material nicht iiberschreitet, analytische
Bezichungen abgeleitet.

Es wurde festgestellt, daB die Stabilitdt des Systems von einer betrdchtlichen Anzahl von Parametern,
u. a. der Art des Kiihlmittels, abhidngt.

Die Stabilitdtskriterien bedingen sehr enge Begrenzungen der Charakteristiken des Systems. Es wurde
eine starke Abnahme des Kiihimittelstroms im Fall eines Riickgangs des Verdampfungsbereichs von
der duBeren Oberfliche in die Platte hinein festgestellt. Der Vergleich der Ergebnisse aus anderen
Experimenten, die der Literatur entnommen wurden, zeigt deutlich, daB eine Vernachlassigung der obigen
Bedingungen in der Tat eine der wichtigsten Ursachen fur die Instabilitit der Zweiphasen-Tran-

spirationskiihlung einer homogenen Wand unter Beniitzung von Wasser als Kithlmittel ist.

OTIPEAEJIEHME OBJIACTHU IMMTAPAMETPOB YCT ONYMBOM U HAJEXHOU
PABOTBI PABHOBECHOWM CUCTEMBI JBYX®A3ZHOI'O [TOPUCTOI'O OXJIAXKIEHUA

Annorama — C HCOONB30BAHHEM YCJIOBUH YCTOMYMBOCTM M OTCYTCTBHS IIporapa OXHOPOIAHOH
CTEHKH BbIBEIEHBl AHAJMTHYECKHME BBIDAXEHMs IAJIA BBIMUCIEHHA oOiacTH NapaMeTpoB, NMpH H3-
MEHEHHH BHYTPH KOTOPOIi CHCTeMa BYX(ha3HOro MOPHCTOrO OXJIAXKIECHHS YCTOHYMBA, a TEMIIEpaTypa
HarpeBaeMoil MOBEPXHOCTH HE MPEBLILIAET NPENC/LHOH ANA HALEXHOH IKCNyaTaUWH NOPHCTOro
MaTepuana. YCTaHOBJIEHO, YTO yCTOHYHBOCTE CHCTEMBI ONPEAEITAETCH CYIIECTBCHHBIM KOJIHYECTBOM
apaMeTpoB, OQHUM M3 KOTOPBIX sBJIACTCS BHI OXTAANTENs.

Vcnosre yCTORYMBOCTH HAKJIabIBAET OYEHb XECTKUE OrPAHHYCHHSA HA XapaKTEPHCTHKH CHCTEMEI,
4TO OGBACHAETCA PE3KHM YMEHBILIEHHEM DAcXOa OXNAaIuTeNsd NpH 3ar/Ty6/leHHH 30HBI HCTIAPEHHsS
C BHELLUHEH MOBEPXHOCTH BHYTpb IacTMHbl. VI3 cpaBHEHMS NOJIyYE€HHBIX PE3yJLTATOB C rnapamep-
paMH OMHCAHHLIX B JINTEPATYPE IKCIEPHMEHTANBHBIX YCTAHOBOK CTAHOBHTCA OYEBUAHBIM, YTO
HecoBmoNeHHe yKa3aHHbIX TpeOOBaHHN M SBISETCA ONHOH M3 OCHOBHBIX NPHYHH HEYCTOWYUBOCTH
nByX(}ha3HOrO MOPUCTOrO OXJAXIACHHA OZHOPOAHON CTEHKM NPH HCHONB30BAHHH BOABI B KaYecTBe

OXJIAOUTENS.



